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Abstract

Deep generative models, such as diffusion models, GANs, and IMLE, have shown
impressive capability in tackling inverse problems. However, the validity of model-
generated solutions w.r.t. the forward problem and the reliability of associated
uncertainty estimates remain understudied. This study evaluates recent diffusion-
based, GAN-based, and IMLE-based methods on three inverse problems, i.e., 16×
super-resolution, colourization, and image decompression. We assess the validity of
these models’ outputs as solutions to the inverse problems and conduct a thorough
analysis of the reliability of the models’ estimates of uncertainty over the solution.
Overall, we find that the IMLE-based CHIMLE method outperforms other methods
in terms of producing valid solutions and reliable uncertainty estimates.

1 Introduction

Deep generative models have seen remarkable growth in adoption across various applications.
These models, exemplified by methods such as diffusion models [22, 9], Generative Adversarial
Networks (GANs) [8], and Implicit Maximum Likelihood Estimation (IMLE) [16], have demonstrated
remarkable capabilities in capturing complex data distributions.

One particularly intriguing application of deep generative models is solving inverse problems, a class
of challenges that involves reconstructing clean data with complex structure, often from incomplete
or noisy observations. Instead of producing a single deterministic solution, these models can learn
entire distributions over the possible solutions. This capability is pivotal when the forward problem
is not injective, in which case there is no unique solution, but rather many solutions. In such cases,
having both a clean solution and a quantification of the uncertainty in the solution are important.

However, a critical aspect often overlooked in the evaluation of deep generative models is the validity
of their outputs as solutions to the underlying inverse problem. More concretely, a valid solution is
one where if the forward problem were applied to the solution, the result would be similar with the
provided input. In other words, while deep generative models excel at generating outputs that appear
plausible, they may not actually be valid solutions to the inverse problem. This validation is of great
importance, since otherwise the generated solutions would not truly invert the forward problem.

Since the forward problem is often not injective, another dimension of evaluation that deserves more
attention is the accuracy of uncertainty estimates. Accurate pixel-level modelling of uncertainty in the
generated solution is crucial, particularly in domains where decisions carry significant consequences.

In this study, we conduct an evaluation of recent deep generative models based on a variety of
methods, including diffusion, GAN, and IMLE, in the context of three challenging inverse problems:
16× single image super-resolution, image colourization and image decompression. Our evaluation
focuses on two critical dimensions that are traditionally underemphasized: output validity and model

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



uncertainty. We aim to assess the extent to which these models’ solutions align with the input data
when passed through the forward problem, and to quantify and analyze the inherent uncertainty in
their solutions.

2 Background

2.1 Deep Generative Models for Inverse Problems

Given the input x and a forward problem F , the goal of inverse problems is to find solutions y such
that F(y) = x. When F is not injective, there can be multiple plausible solutions y for the same
observed data x, i.e., y ∈ {y′|F(y′) = x}. In light of this, deep generative models estimate p(y|x)
to capture the distribution of all plausible solutions.

When F is additive Gaussian, one way to model it is with diffusion models [22, 9]. Specifically,
diffusion models break down F into T additive Gaussian steps that progressively add noise to the
data according to a predefined variance schedule. If we denote the original data as x0, then each step
of the forward process q(x1:T |x0) can be written as:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (1)

Here, β1, . . . , βT represent the variance schedule. To model the reverse process pθ(x0:T ), diffusion
models make an additional assumption, namely that the reverse process is a Markov chain with
Gaussian transition kernels, starting at p(xT ) = N (xT ; 0, I):

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (2)

where µθ(xt, t),Σθ(xt, t) are the predicted mean and covariance at time step t. It’s worth noting that
the reverse process is only truly the inverse of the forward process when there are an infinite number
of time steps T ; otherwise the Gaussianity assumption in the transition kernel of the reverse process
would not hold. In practice, a finite T is used, in which case the Gaussianity assumption would
introduce approximation errors. Therefore, the assumptions of diffusion models are technically not
met when the forward problem is not additive Gaussian or when the number of time steps is small.

One alternative is to use a conditional GAN, comprising a generator and a discriminator. The
generator Gθ takes in the observed input x and a latent code z ∼ N (0, I) and generates an output
y := Gθ(x, z). The discriminator’s role is to distinguish between the generated sample and real
data example. However, due to mode collapse, the generator tends to generate identical samples for
the same input and ignores the latent noise [12]. To mitigate this problem, various approaches have
been proposed, including introducing additional losses in the latent space [28], adding mode-seeking
terms [19], or using contrastive losses [18, 25, 11]. While these methods succeed in enhancing sample
diversity, they often come at the expense of reduced sample fidelity.

Another alternative approach is Implicit Maximum Likelihood Estimation (IMLE) [16]. IMLE differs
from GANs in two key ways: it explicitly aims to cover all modes, and optimizes a non-adversarial
objective. To achieve the former, IMLE reverses the direction in which generated samples are matched
to real data: rather than making each generated sample similar to some real data point, it makes sure
each real data point has a similar generated sample. To achieve the latter, it removes the discriminator
(which matches generated samples to real data implicitly) and instead explicitly performs matching
using nearest neighbour search. The latter can be done efficiently using DCI [14, 15], which avoids
the curse of dimensionality. Recent advancements to IMLE include cIMLE [17], which extends
IMLE to the conditional setting, and CHIMLE [20], which further enhances generated image quality
by adopting a hierarchical approach to constructing latent codes.

2.2 Model Uncertainty Quantification

A popular and statistically rigorous approach to perform uncertainty quantification is conformal
prediction [4, 1, 7, 24]. Conformal prediction stands out for its ability to construct statistically valid
uncertainty guarantees for general predictors without relying on distributional or model assumptions.
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Super-Resolution (SR) Colourization (Col) Image Decompression (DC)

LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑
GAN-based:
BicyleGAN [27] 0.105 22.31 0.832 0.322 20.28 0.716 0.349 19.75 0.781
MSGAN [19] 0.135 20.83 0.810 0.370 18.98 0.665 0.416 17.24 0.712
DivCo [18] 0.136 20.60 0.763 0.336 18.84 0.687 0.356 18.94 0.731
MoNCE [25] 0.091 27.41 0.943 0.030 39.52 0.990 0.213 25.78 0.854

Diffusion-based:
DDRM [13] 0.045 29.57 0.948 0.127 28.21 0.922 0.539 19.07 0.459
NDM [5] 0.082 23.50 0.854 0.057 37.34 0.951 0.525 14.15 0.575

IMLE-based:
cIMLE [17] 0.040 28.57 0.949 0.022 36.12 0.981 0.261 22.39 0.790
CHIMLE [20] 0.009 33.26 0.988 0.011 41.25 0.990 0.191 26.24 0.877

Table 1: Comparison of model output validity among diffusion-based, GAN-based and IMLE-based
methods. The validity is measured by computing the LPIPS [26], PSNR and SSIM between the model
input image and the solution to the forward problem applied to the generated samples, averaged over
50 runs. Lower values of LPIPS are better and higher values of PSNR and SSIM are better. Notably,
CHIMLE [20] consistently achieves the best output validity in our evaluation.

Recent studies [2, 23, 10] have extended the application of conformal prediction to address image-to-
image translation problems. In this study, we adopt a sampling-based approach, as outlined in [10],
to evaluate model uncertainty across different methods.

3 Experiments

We evaluate recent deep generative models for inverse problems that are based on diffusion, GAN
and IMLE. For diffusion-based methods, we choose DDRM [13] and NDM [5]. For GAN-based
methods, we choose BicyleGAN [27], MSGAN [19], DivCo [18] and MoNCE [25]. For IMLE-based
methods, we choose cIMLE [17] and CHIMLE [20].

Our evaluation includes three challenging inverse problems: 16× single image super-resolution, image
colourization and image decompression. For image super-resolution, we choose three categories
from ILSVRC-2012 [21] with an input resolution of 32× 32, and output resolution of 512× 512.
For image colourization, we choose two categories from ILSVRC-2012 [21] and the Natural Color
Dataset (NCD) [3]. For image decompression, we choose the RAISE1K [6] dataset and compressed
each image using JPEG with a quality of 1%.

3.1 Output Validity Assessment

The first evaluation focuses on assessing the validity of the model output as a solution to the inverse
problem. Recall that in an inverse problem, it is essential that the provided input is similar to the
solution to the forward problem with the model output as input. To assess this, we generate 50
random samples for each input image in the test set. These samples are then used as inputs to solve
the corresponding forward problem for each task, namely bicubic downsampling by a factor of 16×
for super-resolution, conversion of RGB images to grayscale for colourization, and compression of
images using JPEG at a quality of 1% for image decompression. Subsequently, we compare the
processed outputs to the original input.

Table 1 shows the average LPIPS [26], PSNR and SSIM metrics between the model input and the
solution to the forward problem applied to the model output. Lower LPIPS distances are better,
whereas higher PSNR and SSIM are better. We found that CHIMLE [20], an IMLE-based method,
performs the best across tasks and metrics. In second place, we have cIMLE [17] according to LPIPS
and SSIM on super-resolution and colourization, DDRM [13] according to PSNR on super-resolution,
and MoNCE [25] according to PSNR on colourization and according to all metrics on decompression.

3.2 Model Uncertainty Evaluation

To evaluate model uncertainty for each method, we adopt a sampling-based approach mentioned in
[10]. For each input, we randomly generate 50 samples from each model and calculate the confidence
interval at each pixel. In our visualization, the confidence interval is superimposed as highlights on
top of the dimmed mean generated sample. A wider confidence interval corresponds to greater model
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Input BicycleGAN [27] MSGAN [19] DivCo [18] MoNCE [25]

DDRM [13] NDM [5] cIMLE [17] CHIMLE [20] Original Image

Figure 1: Comparison of model uncertainty visualized as confidence intervals extracted from 50
randomly generated samples from each method using the same input. As shown, CHIMLE [20]
produces high-fidelity outputs and uncertainty estimates that closely align with ambiguous regions
in the input (e.g., around the black rim of the butterfly’s wing). In contrast, other methods either
produce low fidelity results (DivCo [18], MoNCE [25], DDRM [13] and cIMLE [17]) or contain
excessive uncertainty in less ambiguous input regions such as the thick black stripes in the wing’s
center (BicycleGAN [27], MSGAN [19] and NDM [5]).

uncertainty, visually appeared as a brighter colour. To determine the size of the confidence interval,
we subtract the lower quantile from the upper quantile for each pixel within the set of generated
samples for the same input. In our evaluation, we set the lower quantile at the 5th percentile and the
upper quantile at the 95th percentile. Additionally, when visualizing the confidence interval for a
specific input, we calibrate the lower and upper bounds using the remaining images in the test set,
with more details available in [10].

Figure 1 shows the model uncertainty comparison in the task of 16× image super-resolution. As
shown, BicycleGAN [27], MSGAN [19] and NDM [5] generate samples with significant variations.
However, these methods also show substantial uncertainty in regions that are constrained significantly
by the input and therefore should not be uncertain, e.g., the thick black strips in the wing’s center
should be just solid black with no other possibilities. On the other hand, DDRM [13] generates blurry
outputs and shows low uncertainty in regions where the input is ambiguous, where one would expect
a higher degree of uncertainty, e.g., along the rim of the butterfly’s wing. DivCo [18], MoNCE [25],
and cIMLE [17] show model uncertainties that align with the degree of ambiguity present in the
input, but their outputs are low in visual fidelity. CHIMLE [20] achieves the overall best performance
and produces realistic outputs and uncertainty estimates that accurately capture input ambiguity.
Visual comparisons of model uncertainty for the other tasks, namely image colourization and image
decompression, can be found in the appendix.

4 Conclusion

In this study, we thoroughly evaluated diffusion-based, GAN-based, IMLE-based methods on three
challenging inverse problems, namely 16× super-resolution, colourization, and image decompression.
Our assessment focused on two critical dimensions: output validity and model uncertainty. Surpris-
ingly, despite their popularity, diffusion-based methods do not perform well on either dimension,
whereas GAN-based and IMLE-based methods perform better. Among GAN-based and IMLE-based
methods, CHIMLE [20] seems to perform the best along both dimensions.
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A Additional Results on Model Uncertainty

Input BicycleGAN MSGAN DivCo MoNCE

DDRM NDM cIMLE CHIMLE Original Image

Figure 2: Model uncertainty comparison on image colourization.

Figure 2 shows the model uncertainty comparison of different methods on the task of image colouriza-
tion. In our visualization, the confidence interval is superimposed as highlights on top of the dimmed
mean generated sample. A wider confidence interval corresponds to greater model uncertainty,
visually appeared as a brighter colour. As shown, BicycleGAN, MSGAN and DivCo produce diverse
results but their samples fail to preserve the details from the input and lack visual fidelity (i.e., look
unrealistic). Conversely, MoNCE generates samples with limited diversity, with uncertainty primarily
concentrated in less ambiguous areas, such as the strawberry’s leaf (where the colour of the strawberry
leaf should be green). DDRM produces samples that show desaturation and minimal diversity, and
fails to capture different plausible solutions (e.g., the strawberry’s colour could be either red or green).
NDM provides diverse samples but shows high uncertainty in regions that should not contain much
diversity (e.g., the leaf on the strawberry). cIMLE’s model uncertainty does not fully encompass
the entire strawberry. In contrast, CHIMLE generates diverse samples while assigning low model
uncertainty to regions in the input that are less ambiguous and high uncertainty to regions that should
contain more diversity, capturing a comprehensive and precise representation of uncertainty in the
input data.

Figure 3 shows the model uncertainty comparison of different methods on the task of image de-
compression. As shown, BicycleGAN, MSGAN and DivCo produce excessively diverse samples,
resulting in model uncertainty that spans across the entire image. Conversely, MoNCE lacks sample
diversity and fails to capture the inherent ambiguity present in the input. DDRM struggles to generate
reasonable samples in this example. NDM produces diverse samples but the generated samples are
blurry. The IMLE-based methods, cIMLE and CHIMLE, show model uncertainties that effectively
capture the ambiguous regions in the input, such as the edges of the human and the trees in the top
right corner.
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Input BicycleGAN MSGAN DivCo MoNCE

DDRM NDM cIMLE CHIMLE Original Image

Figure 3: Model uncertainty comparison on image decompression.

8


	Introduction
	Background
	Deep Generative Models for Inverse Problems
	Model Uncertainty Quantification

	Experiments
	Output Validity Assessment
	Model Uncertainty Evaluation

	Conclusion
	Additional Results on Model Uncertainty

